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A strict distinction is made between the two fundamental assumptions in the Stuark 
Watson theory of nonlinear stability, one of whichis that the amplitude of disturbance 
is sufficiently small, while the other is that the damping or amplification rate for an 
infinitesimal disturbance is small. This distinction leads to classification of the non- 
linear stability theory into two asymptotic theories: the theory based on the first 
assumption can be applied to subcritical flows with Reynolds numbers away from 
the neutral curve, even to flows with no neutral curve, such as plane Couette flow or 
pipe Poiseuille flow, while the theory based on the second assumption is available only 
for Reynolds numbers and wavenumbers in the neighbourhood of the neutral curve. 
In  the theory based on the first assumption the concept of trajectories in phase apace, 
together with the method of eigenfunction expansion, is introduced in order to 
display nonlinear behaviour of the disturbance amplitude and to provide the most 
rational definition of the Landau constant available for classification of the behaviour 
patterns. 

1. Introduction 
The nonlinear stability theory of two-dimensional laminar flows was founded by 

Stuart (1960) and Watson (1960). Following the conjecture of Landau (1944), they 
have shown that the behaviour of a small but finite wave disturbance is governed by 
the Landau-type equation 

- + dl A I ' /d t  = pi!) I A 12 + A,I A 14 + O( [ A  1 6 ) ,  (1 .1)  

where I A I is the amplitude of the disturbance, pi:) is the damping rate for an infinit- 
esimal disturbance and A, is a quantity representing the effect of a finite disturbance 
and usually called the Landau constant. Numerical calculations to estimate the 
Landau constants for parallel or nearly parallel flows, such as plane Poiseuille flow 
or Blasius boundary-layer flow, have been carried out by Reynolds & Potter 
(1967), Pekeris & Shkoller (1967, 1969), the present author (Itoh 1974a, b )  and 
others. 

The Stuart-Watson theory is based on the following two assumptions: ( 1 )  that the 
amplitude IAl of the disturbance is sufficiently small; (2) that the modulus of the 
damping rate pi:) for an infinitesimal disturbance is also sufficiently small. Strictly 
speaking, the first assumption should be justified by using the asymptotic theory 
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valid for I A I -+ 0,  and the second assumption by the asymptotic theory valid for 
+ 0. Accordingly, it is necessary to distinguish carefully between these two 

assumptions. This point of view would reveal the fact that there is a significant 
difference between the approach of Stuart and that of Watson. 

The theory given by Stuart, and extended by Eckhaus (1965), is based on assump- 
tion 2 ;  the damping rate pi:) is taken as a small parameter of the expansion and the 
amplitude is assumed to be of order I,&)]*. This theory, however, seems to be imperfect 
in that coefficients of the asymptotic series are determined as functions of both the 
Reynolds number and the wavenumber, although the coefficients should depend upon 
only ;he Reynolds number and wavenumber on the neutral curve corresponding to 
the limit pi:) + 0 ,  as suggested by Stuart himself. The rigorous formulation is given in 
Stewartson & Stuart (1971), where all quantities are expanded about the minimum 
critical point on the neutral curve. Since assumption 2 requires the existence of a 
linear neutral curve, this approach is available only for such problems as plane 
Poiseuille flow and Blasius flow, and cannot be applied to subcritical flows with no 
neutral curve, such as plane Couette flow or pipe Poiseuille flow. 

On the other hand, the approach of Watson is by its nature based on assumption 1.  
However, he assumed that each Fourier component of the stream function for the 
disturbance with respect to the flow direction is determined uniquely as a function of 
the fundamental component. This treatment is permissible under assumption 2 and 
therefore turns out to restrict the validity of his approach to a narrow range of the 
Reynolds number R and wavenumber a in the vicinity of the neutral curve. Actually, 
Ellingsen, Gjevik & Palm (1970, 3 4) applied this approach to plane Couette flow, for 
which pit) is always positive in the whole range of R and a, and obtained the peculiar 
result that the sign of the Landau constant changed quite rapidly with variation of 
R and a. This fact suggests that the approach of Watson is not applicable to ranges of 
R and a away from the neutral curve. On the other hand, another method of approxi- 
mation adopted by Ellingsen et al. (1  970, Q 5) leads to the apparently plausible result 
that the Landau constant retains a fixed sign for a large range of R and a. The essential 
point of this approximation is to neglect the damping rates of both the mean-flow 
distortion and the second-harmonic component, but no convincing justification has 
been provided for this approximation. It is the aim of the present paper to indicate 
that the asymptotic theory based on assumption 1 gives rise to the same equations 
defining the Landau constant as those given by Ellingsen et al. and that the Landau 
constant defined in this way is meaningful for any Reynolds number and wavenumber 
and is very powerful for classifying the behaviour patterns of disturbances. This aim 
is achieved by using the method of eigenfunction expansion developed by Eckhaus 
(1965) and the technique of trajectories in phase space. 

2. Expansion procedure 
We restrict our attention to two-dimensional problems. Let (2, y) be the non- 

dimensional co-ordinates in the streamwise and normal directions, respectively, and 
t be the time. The stream function Y(x, y, t )  of a disturbance superimposed on a basic 
laminar flow with velocity U(y) is governed by the equation 

(L -  aM/at )Y  = &N*[Y,Y]) (2.1) 
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where the operators L, M and N* are defined by 

and R is the Reynolds number of the flow. We consider a periodic solution of the above 
equation, i.e. a solution representing a monochromatic wave with wavenumber a in 
the x direction. Thus!!? may be written as a Fourier series: 

m 

Y(x, y, t )  = 5 Yk(?/, t )  eikaz,  
k=--a,  

where y - k  = \Tk, the tilde denoting the complex conjugate. Substituting (2.2) into 
(2.1) and separating out the Fourier components, we have an infinite set of equations: 

where k = 0, f 1, f 2, . . . , and the operators Lk and M, are those obtained by replacing 
a/ax with ika in the operators L and M while N is that obtained by replacing a/ax 
with i (k  - 1 )  a or ila in the operator N". 

In  the linear problem, where the right-hand side of (2.3) is ignored, the solution is 
assumed to be of the form 

y k ( Y ,  t ,  = # k @ )  exp ( -h t ) ,  

which leads to the Orr-Sommerfeld equation 

(Lk +Pk Mk) # k ( Y )  = O .  (2.4) 

This equation, together with homogeneous boundary conditions, provides an eigen- 
value problem determining ,uk as a function of R and ka.  The real and imaginary parts 
of the eigenvalue represent the damping rate and frequency of the corresponding 
eigenmode in the disturbance. For each value of k there exist an infinite sequence of 
eigenvalues ,up) (n = 0,1 ,2 ,  ...), ordered in such a way that Re,@+') > Repp), and 
the corresponding eigenfunctions &)(y), which are normalized in a suitable manner 
and are assumed to constitute a complete system. If we introduce the adjoirrt eigen- 
functions $Lm)(y) (m = 0,1 ,2 ,  . . .) in a normalized form, then an orthogonality relation 
can be obtained (Eckhaus 1965, chap. 6): 

where a,,, denotes the Kronecker delta. 

(2.3) as a forcing term, we may write the formal solution of (2.3) in the form 
Using the above results of the linear theory and regarding the right-hand side of 
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If we substitute (2.6) into (2.3), multiply by the adjoint eigenfunction &fi")(y) and 
integrate the resultant equation with respect to y from 0 to 1, an infinite set of simul- 
taneous equations for the unknown amplitude functions Aim)(t) is obtained: 

The next step is to solve the initial-value problem for the temporal variation of the 
amplitude governed by the above equations. Here it should be noted that what is 
interesting to us is not a particular solution under some specific initial conditions, 
but to obtain the most realistic solution when the disturbance is sufficiently small. 
If appropriate orders of magnitude of the amplitude functions are defined by initial 
conditions and all the amplitude functions determined from the solution of (2.7) are 
found to remain of the same orders as the initial conditions during the time history, 
then the initial conditions and also the solution are considered to be natural. For such 
a treatment the order-of-magnitude considerations introduced by Stuart (1960) and 
Watson (1960) are available. If we assume that the first eigenvalue pio) of the funda- 
mental component has the smallest damping rate among all eigenvalues 

( k , n = 0 , 1 , 2  ,... ), 
the following estimation of the orders of magnitude leads to no inconsistency: 

1 (2.9) 
Aio)(t) = eaio)(t), Al;")(t) = s2al;")(t), Ain)(t) = e2aia)(t) (n = 0, 1,2,  ...), 

A p ) ( t )  = O(e3) (n >/ l),  A(kn)(t) = O(ek) ( k  >/ 3, n 2 0 ) ,  

where ap)( t )  is of order unity and E is a small quantity representing the magnitude of 
the first eigenmode Alo'(t) of the fundamental component, the other eigenmodes Ain)(t) 
being taken to be of order €3 because they result from nonlinear interactions between 
Aio) and A p )  or Aia). Here it is convenient to decompose the (k 9 0) into the real 
amplitudes and phase angles, because the a p )  (k $; 0) are complex while ah") is real. 
Moreover, we need only the phase angles relative to the fundamental component, 
and we introduce the phase differences defined by 

op(t) = opyq - kepyt) ,  
where up)( t )  = lap)(t)I exp(iOP)(t)} (2.11) 

(2.10) 

and k = 1, 2, 3, ..., 12 = 0, 1, 2, ... . Substituting (2.9)-(2.11) into (2.7) and separating 
out the real and imaginary parts, we have 

(2.14a: 
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where a&.P"J) = Ia$P'Q)I exp (i&P,Q)), suffixes r and i denote the real and imaginary 
parts, respectively, while pi") and a&o,o) are real. We have ignored the equations for 
the other components, which are of smaller order. The above equations define a group 
of trajectories in an infinite-dimensional phase space with co-ordinates I a, ah"), luin)I 
and O r )  (n = 0, 1,2, ...), the time t being considered as a parameter. In  the next 
section we use a topological consideration to classify the shape of trajectories in the 
phase space. 

3. Trajectories in the phase space 

infinite-dimensional phase space with co-ordinates 
By equating the right-hand sides of (2.12)-(2.14) to zero, we obtain surfaces in the 

fa1O)I2, up), lap)\ and @in) (n = 0,1,2, ...). 

On each surface one of the amplitude functions is in equilibrium in the sense that its 
derivative with respect to time is equal to zero. In  other words, when a trajectory 
crosses one of the surfaces, its tangent has the direction normal to the co-ordinate 
for which the surface is defined. Therefore, if all the surfaces intersect a t  a point, it is an 
equilibrium point of the phase space. In  order to reveal the properties of trajectories 
it is necessary to investigate the shape of the surfaces and the position and stability 
of the equilibrium points. 

First we examine properties in the limiting case E + 0 of the surfaces 

( 3 . 2 ~ )  

(3.2b) 

which are obtained by equating the right-hand sides of (2.13) and (2.14) to zero. In  
the limiting case 6 - f  0 each of equations (3.1) represents a plane surface through the 
origin of the space, and the tangent to every trajectory at its intersection with this 
plane is found to be parallel to the co-ordinate axis I 4 O ) I 2 .  Similarly, equations (3.20) 
define plane surfaces (with constant values (3.2b) of @c)) on which trajectories have 
tangents parallel to the ILZJO)~~ axis. Therefore we can easily see that all surfaces (3.1) 
and (3.2) intersect along a straight line on which up) and lar)I are proportional to 
Id0)l2 and O r )  is constant. If there are equilibrium points in this phase space, they 
must all be located on this straight line. 

On the other hand, if we put e = 0 in (2.12), the surface on which dluio)12/dt = 0 is 
given by Iui0)l2 = 0, so long as pi!) =l= 0. [The case when pit) is very small is discussed 
in Q 5.1 The intersection of this surface with the straight line defined by (3.1) and (3.2) 
is at the origin of the phase space luio)12 = sin) = lap)[ = 0, and the stability condition 
for this equilibrium point is that pi!) > 0, as predicted by linear theory. 

Next we consider the case when s is small but finite. Then the surfaces (3.1) and 
(3.2) are not planes, but somewhat curved surfaces slightly distorted from plane 
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surfaces. Accordingly the intersection line likewise becomes a curve slightly distorted 
from a straight line. The damping rate of the fundamental wave along this curve is 
obtained from substitution of (3.1) and (3.2) into (2.12) as 

d [ ~ 0 ) [ 2 / d t  = - 2[ap)12{pg? +&I, lU i0 )12+0(€4)} ,  (3.3) 

where A, is the real part of the complex quantity h defined by 

The equilibrium points are given by the values of [ai0)l2 which make the right-hand 
side of (3.3) vanish. One of the possibilities is given by the case [u io) /2  = 0, which has 
already been discussed, and another possibility is formally given by 

[ u p  12 = - p p p h ,  + O(E2). (3.5) 

This point, however, will move out to infinity in the limit E +  0, SO long as pi:) += 0 
and A, $. 03, &)/A, being finite, i.e. independent of E. This contradicts the assumption 
that do)(t) is of order unity. In  other words, the asymptotic theory with the disturbance 
amplitude as the small parameter turns out not to provide an estimate of finite equili- 
brium amplitudes. Nevertheless, it is certain that this approach discloses some features 
of trajectories in the phase space for sufficiently small values of E .  Even if E tends to 
zero, so that the equilibrium point given by (3.5) moves out to infinity, we can see the 
shape of trajectories at  least in the region where [ 2, ub") and [ up)l (n = 0, 1,2,  . . .) are 
all of order unity. Moreover, it is found that the shape of trajectories can be classified 
into four patterns according to the four combinations of the signs of pi:) and A,. 

In  order to comprehend the features of trajectories, we restrict our attention for the 
moment to the simpler case of a two-dimensional phase plane with co-ordinates 
[@Iz and aho), and investigate the shape of trajectories governed by 

where smaller terms O(e4) in (3.6) and O ( 8 )  in (3.7) have been ignored, pio) is assumed 
to be positive on the basis of the fact that linear solutions for the mean-flow distortion 

be positive or negative. In  this case the definition (3.4) of A, reduces to 
decay in most problems of stability, while other coefficients pi:), cri%$O) and CT~? O r o )  may 

Figure 1 shows four possible patterns of trajectories in the [do)12, uio) plane, which are 
classified according to the signs of the linear damping rate pi!) and the coefficient A,. 
Here the straight lines PC and OD denote solutions of the equations obtained by 
equating the right-hand sides of (3.6) and (3.7) to zero, respectively, C being the 
intersection of the two lines. In  the case when pi!) > 0 and A, < 0, the straight line 
OD on which daio)/dt = O  intersects the straight line PC on which dlaio)[2/dt = 0 at a 
point located in the region ldo)[2 > 0. Noting that ,u$~) is positive, so that daho)/dt is 
positive on the lower side and negative on the upper side of OD, and that pi:) is positive, 
so that d [  do) I 2/dt is negative on the same side as the origin 0 and positive on the opposite 
side of PC, we can draw the rough shape of trajectories, as shown in figure l (a ) .  In  
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( c )  (d  ) 

(c )  p:; > 0, A, > 0. (d) pL:o7) < 0, A, < 0. ( P  = -p;y(."g;~"), Q = -py;/(€zh).) 
FIUURE 1. Four patterns of trajectories on the phase plane. (a )  pio: > 0, A, < 0. ( b )  pio: < 0, A, > 0. 

this case the equilibrium point C is found to be unstable, having a large positive 
value of Ido)12 of order l/@. This shape of trajectories shows that a disturbance decays 
when it has a sufficiently small initial amplitude, but may grow when it has a sufficiently 
large initial amplitude, say O( I/@). On theother hand, the casewhenpi:) < 0 and A, > 0 
shows the existence of a stable equilibrium point with a large positive value of luf')lz, 
and trajectories tend to this point as the parameter t increases. In  the other two 
cases the equilibrium points are located in the physically meaningless region la$o)12 < 0, 
and trajectories in the region la$o)/2 2 0 show that disturbances monotonically decay or 
grow according as ,I&!) and A, are both positive or negative. 

The above classification of trajectories into four patterns can be applied directly 
to the case of the infinite-dimensional phase space defined by (2.12)-(2.14), because of 
the orthogonality of all the co-ordinate axes. It is however necessary to note that 
(3.26) defines two values of @?) in the range - - 7 ~  < @p) < 7 ~ .  We should choose the 
value which makes the corresponding surface represent a stable equilibrium to small 
shifts in lap)I and @in) from the values given by (3.2 a, b ) .  Since the quantities necessary 
for the classification are pip) and A, only, it can be considered that the classification is 
summarized by (3.3). A noteworthy fact is that (3.3) is an asymptotic expression 
(valid for small amplitude) for the damping rate of the fundamental wave on a curve 
representing the solution of the simultaneous equations (3.1) and (3.2). When the 
damping rate of a disturbance is expressed as a power series in the amplitude, the 
second coefficient is usually called the Landau constant and represents the dominant 



462 N .  Itoh 

effect of nonlinearity. In order to rewrite (2.12) in the form of (3.3), however, we need 
to determine only a straight line passing through the origin in the phase space. There- 
fore there are an infinite number of definitions of the Landau constant corresponding 
to the infinite number of choices of the straight line. However, the above investigation 
shows that the definition (3.4) is most useful from the viewpoint that the Landau 
constant should be a basic factor for classification of trajectories in the phase space, 
This point is discussed further in 3 4. 

Here a simpler method is shown to yield the complex Landau constant h defined 
by (3.4) without use of eigenfunction expansions. By applying (2.8) to a i $ O * P )  and 
C T $ $ ~ , ~ ) ,  we may rewrite the definition (3.4) in the form 

Then it is easily found from the definition of ai!”*‘J) that the functions go(y) and g&) 
are the solutions of the equations 

Lo SO(Y) = “4Sl0)(Y), &O’(Y)l (3.10) 

and (L2 + 2~Pkli)MZ) 9, = W [ + i O Y Y L  +iO)(!/)l, (3.11) 

respectively. Thus we can obtain the value of h by solving (3.10) and (3.11), sub- 
stituting the solutions into the integrands of (3.8), and performing the integrations. 
Equations (3.10) and (3.11) correspond to equations (5.1) and (5.2) in the paper of 
Ellingsen et al. (1970), respectively. 

4. Comparison with the method of Watson 
The equation (2.13) for the mean-flow distortion has the solution 

up)( t )  = Ch*)exp( - p ~ ) t ) - a g ~ ~ ~ ~ ) e x p  ( -pp) t )J  Iaio)(t’)lzexp ( , u i n ) t ’ ) d t ’ + ~ ( . ~ ) ,  

where Chn) is an arbitrary constant. In  the formulation of Watson (1960), the first 
term, containing Cin), is ignored because every damping rate pin) for the corresponding 
eigenmode of the mean-flow distortion is much larger than the damping rate of the 
fundamental wave. [A clearer explanation of this process is given by Eckhaus (1965, 
chap. 7).] If we follow his approach with the same treatment for the solution of the 
second-harmonic component, we obtain the solutions of (2.13) and (2.14) as 

(4.1) 

Substitution of these solutions, instead of (3.1) and (3.2), into (2.12) leads to another 
definition of the Landau constant: 
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FIGURE 2 .  Trajectories in the case pi: > 0 and h, < 0. 

where the functions G,(y) and G,(y) are the solutions of the equations 

and 

respectively. Equations (4.5) and (4.6) differ from (3.10) and (3.11) only by the addi- 
tional terms 2p$!M0 and 2pi;)M. involved in the operators on the left-hand sides. 

Thus we have two different definitions of the Landau constant, one of which is 
given by (3.8) with (3.10) and (3.11) and the other by (4.4) with (4.5) and (4.6). Here 
let us compare these two Landau constants h and A by the use of phase-space con- 
siderations. Again we take the simpler example of the two-dimensional phase plane, 
as shown in figure 2. Then the quantity h is, as we have seen, defined in association 
with the straight line du,$O)/dt = 0 (namely OD in figure 2), while A is defined in 
association with the asymptote OJ on which the trajectory approaches the origin, as 
can be seen by obtaining the direction from (3.6) and (3.7) and comparing with (4.2). 
Although the line OJ coincides with OD in the neutral case p$!) = 0, the separation 
of the two lines owing to a non-zero value of pi:) leads to the difference between h 
and A. In particular, when 2pg) or 2,uio) is equal to one of the eigenvalues or pin), 
the Landau constant A becomes infinite because of singularities in (4.2) and (4.3) 
(cf. Ellingsen et ul. 1970). This is considered as the main reason why the method of 
Watson is invalid for subcritical flows, as pointed out by Davey & Nguyen (1971). 
If an equilibrium point with finite amplitude exists in the phase plane, it must be 
located on the line OD, and not on the asymptote OJ.  Since the position of equilibrium 
points governs the main behaviour of trajectories, the Landau constant A defined in 
association with the straight line OD is the most rational quantity for representing the 
most important properties of nonlinear development of disturbances. 

For a clearer illustration of the above description, it is relevant to take an example 
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FIGURE 3. Trajectories in the case 0 < pio: < pLo) < 2pi: Q 1. 

in which A, has the opposite sign to A,. In  the two-dimensional problem with co- 
ordinates ]uio)12 and ah0), we consider the case where pio) and p;!) satisfy the relation 

0 < p p  < p p  < 2pp < 1. (4.7) 

[We can easily find some examples satisfying this relation. For instance, for plane 
Poiseuille flow at R = 5000 with a = 0.95, the author’s recent calculations show that 
pi!) = 0.00284 andphO) = 0.00404.1 Supposing that both a $ T o > O )  and a & O , O )  are negative, 
we obtain the trajectories on the phase plane shown in figure 3. The gradient of the 
straight line OD, given by -ahto.O)/pho), is positive, while that of OJ, given by 

a p q 2 p g )  -pp),  
is negative. Thus the two Landau constants are opposite in sign: 

The Landau constant A, defined by (4.4)-(4.6) apparently suggests a damping effect 
of finite amplitude disturbances, but the trajectories in figure 3 belong to the first 
pattern in figure 1,  showing that the effect of finite amplitude is to reduce the damping 
of disturbances. This example clearly indicates that A, can precisely describe the 
variation in disturbance amplitude, while A, is inadequate for this purpose. We note 
in this example that the line OJ is not even an asymptote because of the condition 
p t )  < 2p;:), although it is one of the trajectories. 

Here a remark should be made on another important difference between the two 
approaches mentioned above. When the Landau constant defined by Watson is used, 
an amplitude equation of the form (1 .1)  governs the variation in disturbance amplitude 
along a trajectory in the neighbourhood of the origin. On the other hand, equation 
(3.3)) where A, is used, exhibits only the damping rate of the fundamental wave on the 
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FIGURE 4. The neutral curve pi: E f(R, a) = 0 and an example of 

the path along which the distance s is measured. 

line OD defined by (3.1) and (3.2), and does not provide any information on the varia- 
tion in disturbance amplitude along trajectories. The Landau constant A, is meaningful 
in the sense that it is a key to classification of the four patterns in the phase space. 

5. Comparison with the theory of Stuart 
As mentioned in 0 3, the asymptotic expansion with respect to a small amplitude 

does not contribute to determination of finite equilibrium amplitudes. However, for a 
very small value of pi$), say O(e2) ,  (3.5) seems to be a good approximation to a true 
equilibrium amplitude. Stuart (1960) has chosen the damping rate pi!) as a small 
expansion parameter together with the assumption that the amplitude [Aio)I is of 
order 1p$"+l4 (i.e. e2 = O(p$:))). This approach corresponds to an asymptotic expansion 
with respect to the small distance s from a point (B,, a,) on the neutral curve along an 
appropriate path on the R, a plane, as shown schematically in figure 4. Although the 
path may be chosen arbitrarily, the most convenient one seems to be the curve 
crossing every iso-damping line normally. Once the path has been determined, the 
quantities R, a: and pio) can be expanded in power series in the distance s as 

R = R, + (dR/ds), s + 0(s2), (5.1) 

a = ao+((da/ds),s+O(s2), (5.2) 

(5.3) p p  = (piO)), + (dpp/dS), s + 0(s2), 

where a subscript zero denotes the value at the point (Ro, a,). Here (dpi0)/ds), is 
obtained from the solvability condition for the equation derived from substituting 
(5.1) and (5.2) into (2.4) with k = 1 and expanding the solution in powers of s (see 
Stewartson & Stuart 1971). Since the real part of (,up)), is zero, we see that ,L& is of 
order s. Moreover, on the basis of the assumption that the magnitude B of the disturb- 
ance is of order s&, we may put 

€2 = s, (5.4) 
16 F L M  82 
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because there are no other restrictions on the selection of 6 .  Substitution of (5.1)-(5.4) 
into all the equations of $ 5  2 and 3 leads to a complete asymptotic theory valid for a 
small value of s, the Landau constant also being written in the form of a power series: 

This theory provides the asymptotic expression for a finite equilibrium amplitude as 

which tends to a finite value as s --f 0. The patterns of trajectories in the phase space 
are the same as those in figure 1 except that the equilibrium point remains in a finite 
range of laio)I even if s .+ 0, although we should replace pi:) and A, with (d&!)/ds), s 
and (Ar)o, respectively. 

The above asymptotic theory, which forms a rigorous extension of the theory of 
Stuart, should be precisely distinguished from the theory given in $4 2 and 3. In  the 
former the coefficients in the expansion depend upon only a point on the neutral curve, 
the distance from which is taken as the expansion parameter, so that the theory is 
valid only in the vicinity of the neutral curve. A great advantage of expansion with 
respect to the distance from the neutral curve is that it  presents an asymptotic 
expression for a finite equilibrium amplitude, which cannot be derived from the 
expansion with respect to the amplitude of disturbance. On the other hand, the 
theory presented in $3 2 and 3 is valid for any Reynolds number and wavenumber, 
and is therefore applicable to subcritical flows with no neutral curve, such as plane 
Couette flow or pipe Poiseuille flow, because the coefficients in the expansion are 
determined for a given Reynolds number, wavenumber pair, which is not required to 
be located in the vicinity of the neutral curve. However, the wavenumber should be 
chosen so as to produce the smallest or nearly smallest damping for the given Reynolds 
number. This selection would provide a basis for the assumption that natural disturb- 
ances can be suitably described by the order-of-magnitude considerations of (2.9). 
It is also possible to examine interactions of two or more harmonic components by 
the use of similar phase-space techniques if we introduce an appropriate ordering 
different from (2.9), for instance Ai0)(t) = O(s) and A!jo)(t) = O(s) ,  as assumed by Craik 
(1 97 1) for an investigation of resonant triads of Tollmien-Schlichting waves. 

This work was partly done while the author was visiting the Imperial College of 
Science and Technology, London. Frequent and helpful discussions with Professor 
J. T. Stuart are gratefully acknowledged. The author also would like to express his 
gratitude to Professor Itiro Tani for his careful reading of the manuscript and helpful 
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